A sialic acid-derived phosphonate analog inhibits different strains of influenza virus neuraminidase with different efficiencies.
نویسندگان
چکیده
A phosphonate analog of N-acetyl neuraminic acid (PANA) has been designed as a potential neuraminidase (NA) inhibitor and synthesized as both the alpha (ePANA) and beta (aPANA) anomers. Inhibition of type A (N2) and type B NA activity by ePANA was approximately a 100-fold better than by sialic acid, but inhibition of type A (N9) NA was only ten-fold better than by sialic acid. The aPANA compound was not a strong inhibitor for any of the NA strains tested. The crystal structures at 2.4 A resolution of ePANA complexed to type A (N2) NA, type A (N9) NA and type B NA and aPANA complexed to type A (N2) NA showed that neither of the PANA compounds distorted the NA active site upon binding. No significant differences in the NA-ePANA complex structures were found to explain the anomalous inhibition of N9 neuraminidase by ePANA. We put forward the hypothesis that an increase in the ePANA inhibition compared to that caused by sialic acid is due to (1) a stronger electrostatic interaction between the inhibitor phosphonyl group and the active site arginine pocket and (2) a lower distortion energy requirement for binding of ePANA.
منابع مشابه
Synthesis of a Phosphonate Analog of Sialic Acid (Neu5Ac) Using Indium-Mediated Allylation of Unprotected Carbohydrates in Aqueous Media
Sialic acid (Neu5Ac, 1), a constituent of sialoglycoproteins1 and gangliosides,2 mediates a number of intercellular and cell-virion recognition events.3 Analogs of sialic acid are interesting as potential inhibitors for medicinally important target proteins, such as neuraminidase of the influenza virus.4 The syntheses of sialic acid and its analogs have been the subject of extensive research.5 ...
متن کاملAureonitol, a Fungi-Derived Tetrahydrofuran, Inhibits Influenza Replication by Targeting Its Surface Glycoprotein Hemagglutinin
The influenza virus causes acute respiratory infections, leading to high morbidity and mortality in groups of patients at higher risk. Antiviral drugs represent the first line of defense against influenza, both for seasonal infections and pandemic outbreaks. Two main classes of drugs against influenza are in clinical use: M2-channel blockers and neuraminidase inhibitors. Nevertheless, because i...
متن کاملNeuraminidase gene sequence analysis of avian influenza H9N2 viruses isolated from Iran
Influenza A viruses possesses two virion surface glycoproteins including haemagglutinin (HA) and neuraminidase (NA). The NA plays an important role in viral replication and promotes virus release from infected cells and facilitates virus spread throughout the body. To find out any genomic changes that might be occurred on NA gene of avian influenza circulating viruses, we have genetically analy...
متن کاملInvestigation of the binding and cleavage characteristics of N1 neuraminidases from avian, seasonal, and pandemic influenza viruses using saturation transfer difference nuclear magnetic resonance
OBJECTIVES The main function of influenza neuraminidase (NA) involves enzymatic cleavage of sialic acid from the surface of host cells resulting in the release of the newly produced virions from infected cells, as well as aiding the movement of virions through sialylated mucus present in the respiratory tract. However, there has previously been little information on the binding affinity of diff...
متن کاملBioinformatics study of complete amino acid sequences of neuraminidase (NA) antigen of H1N1 influenza viruses from 2006 to 2013 in Iran
Introduction: Influenza is a contagious acute viral disease of the respiratory tract that causes fever, headache, muscle aches and cough. One of the unique features of influenza virus is antigenic variation in viral protein neuraminidase (NA) which causes emergence of new virus variants. NA is responsible for the release and spread of progeny virions. Due to the continuous changes of NA genes, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular biology
دوره 245 5 شماره
صفحات -
تاریخ انتشار 1995